Q(1/4)=6x^2-12

Simple and best practice solution for Q(1/4)=6x^2-12 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for Q(1/4)=6x^2-12 equation:



(1/4)=6Q^2-12
We move all terms to the left:
(1/4)-(6Q^2-12)=0
We add all the numbers together, and all the variables
-(6Q^2-12)+(+1/4)=0
We get rid of parentheses
-6Q^2+12+1/4=0
We multiply all the terms by the denominator
-6Q^2*4+1+12*4=0
We add all the numbers together, and all the variables
-6Q^2*4+49=0
Wy multiply elements
-24Q^2+49=0
a = -24; b = 0; c = +49;
Δ = b2-4ac
Δ = 02-4·(-24)·49
Δ = 4704
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$Q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$Q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4704}=\sqrt{784*6}=\sqrt{784}*\sqrt{6}=28\sqrt{6}$
$Q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-28\sqrt{6}}{2*-24}=\frac{0-28\sqrt{6}}{-48} =-\frac{28\sqrt{6}}{-48} =-\frac{7\sqrt{6}}{-12} $
$Q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+28\sqrt{6}}{2*-24}=\frac{0+28\sqrt{6}}{-48} =\frac{28\sqrt{6}}{-48} =\frac{7\sqrt{6}}{-12} $

See similar equations:

| -3=4(v+3)-7v | | 4x+2x+6=6 | | 4x+2(x+3)=6 | | -3×-3-5x-9x=-3 | | 233=122-w | | 5(x+4)-3(x-2)=20 | | -4(w+2)=-9w-28 | | F(x)=-4x^2+4x | | 2a—5=-3a | | 28=8-2u | | 5x=(x+8+46)/2 | | 24=-11-8+3y | | (3x-2)/5=(x-9)/2 | | 2×(x+2)-1=4 | | 0.15x=1.20 | | 0.1-(t/873.36)+2.15=0 | | 2(x+2)-1=4 | | m/6=28 | | 3/2x+3=5x+1-x | | (3/2)x+3=5x+1-x | | (3/2)x+3=5x+1-1 | | y=900•3 | | x/4-1=37/5-5x | | x/4+3/5=5x/20+1 | | x/5+2=12-x | | x÷5+2=12-x | | 4x+6x-13=4x+x+12 | | 24x^2-24x-83=Y | | 5-x/3=-10 | | d*d+3d-88=0 | | -6+x2=-2 | | -200=(6n-2) |

Equations solver categories